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;i . Abstract

jl i This paper describes a method of simulating a Markov chain for

v the purpose of estimating functions of the chain and functions of

- associated semi-Markov processes. In particular, special attention is
devoted to the estimation of the probability density function of first
passage time from, say, state a to state b. Rotation sanling is used

to achieve variances of estimators of order 0(1/4('3‘)/, ﬁlh:;"eul:i)s the

number of replications, which compares with 0(1/k) when independently
sampled replications are used. Since both independent and rotation sampling

have computation time complexity O(k), the relative advantage of rotation

sampling is clear as k + ». The paper presents two examples to illustrate

the method.
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* Introduction

Consider a positive recurrent aperiodic Markov chain with state space
S = (0,1,...,n) and transition probability matrix Ry = H P || where
pij denotes the probability of moving from state i to state j in one
step for i,j e S. Let sij denote the frequency of one-step transitions
from i to j during a first passage from state a to state b a,b e S
and let s denote a lx(n+1)2 vector with Sij in column n(i-1) + j .
Also let p(s;a,b) denote the probability of observing the frequency
vector s during a first passage.

The need to know p(s;a,b) arises in many areas of applied probabilitv
and operations research. For example, consider a semi-Markov process with
Markov chain R, and holding time probability density function (p.d.f.)
fij(t) on [0,=) for one-step transitions from i to j i,j e S . Let
fij(tls) denote the s-fold convolution of fij(t) with itself. Then the

semi-Markov process has first passage time p.d.f.

g(tsa,b) = Z§ p(gs;a,b) f(t]|s) (1)

where f(t|s) denotes the convolution of the p.d.fs. fij(tlsij) for all

i,j € S such that 51j >0 . .
Although one can write down systems of equations to represent (1), it is

difficult to solve these systems. In particular, it is difficult to derive

computationally convenient expressions for p(s;a,b) . The purpose of

this paper is to propose a method for estimating p(s;a,b) by means

of a superefficient Monte Carlo sampling method and then showing how these
estimates can be used to estimate an important class of reward functions, of
which (1) is a special case. In k independent Monte Carlo replications or

sampling experiments, the variances of estimators usually are 0(1/k). The
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sampling plan proposed here leads to variances of order 0(]/k2). Since the
computation time complexity of the proposed scheme is 0(k), which also holds

for independent replications, the proposed sampling plan is termed superefficient .

The sampling plans use a special case of the antithetic variate method
(Hammersley and Handscomb 1964) called rotation sampling which is described
in detail in Fishman and Huang (1980). The technique has already been
applied to the direct simulation of Markov chains in Fishman (1981a, 1981b,
1982a). The present paper extends the technique to the estimation of the
more complex probabilities p(s;a,b).

Section 1 describes the procedure in detail and Section 2 describes
how it applies for Gamma distributed holding times. Section 3 presents two
examples, one of which is the estimation of the p.d.f. of busy time for the
M/M/1 queueing model. The results of this example are compared with the
theoretical solution in Cox and Smith (1961, p. 148). These examples use
the MCHAIN FORTRAN subprogram (Fishman 1982b) which enables one to simulate
k replications of the chain in parallel, using rotation sampling.

For consistency with the earlier work in Fishman (1981a, 1981b, 1982a),

we add several modelling details. We assume that there exists a positive

;i; integer & < (n-1)/2 such that

"o

o p.. =0 for |i-j| > &
L and 1

ff;' min(n,i+s) _

‘$- Z,j=max(0,‘i-6) pij =1

Also, Jet sj denote the total number of states that have positive transition

probabilities from state j and let {m 1,....sj} denote the ordered

i "7
sequence (mjr < mj,r+1; r= 1....,sj -1) of the sj states to which entry can

occur from state j. Then one has the representation

e S S i . WU O e I e et L




-y

.
‘.‘
-~
-

-3-
P >0 r=l,...,s,;
;a’ : (2)
Piy =
r=1 ijr
& > max (Imj]- J » lmjsj-jI) j= 0,1,... .

The value of this alternative, .but equivalent, representation
becomes apparent when actually generating sample paths by simulation on
a computer. See Fishman (1982b).

1. Simulation of a Markov Chain

Reward Functions

Let I denote the set of all one-step (i,j) transition pairs with pij> 0.

Suppose one wants to use simulation to study the behavior of the chain

during an interval that begins with exit from state a and ends with entry to

state b where a,b ¢ S. Let

Ni = frequency of transitions of type i during
first passage on an arbitrarily selected  (3a)

sample run
and

A(Jys...sj.38) = reward received during first passage for
e edpid) Jyseeerd, transitions of types 1,...,r (3b)

respectively.
A type denotes all the one-step (i,J) transition pairs which lead

to the exact same reward. Here there are r distinct types. This notation
proves convenient later in reducing the dimensionality of the estimation
problem.
On k replications the sample mean reward is
R, = ‘; 7%y ANEE) N (4)
where the superscript (£) denotes replication £. The reward function A can

assume many alternative forms. For example, if

A(j]o---:jr;g) = :=1 Jsas (5)




for given & =.(a],...,ar) » R, is linear in S,,...,S_where
_ ok (£)
5 = zz;l Ny (6)
This case has been studied in detail from the point of view of simulation in
Fishman (1981a, 1981b, 1982a). As a second example, consider a semi-Markov
process with Markov chain ‘En and continuous holding time p.d.fs.
f],...,fr for the r types of transitions in I. Let
J
9;(t1d) = Fi(t) « F(t) » .. w F(t) O<ct<w (7)

denote the j-fold convolution (j > 0) of fi . Then for given N,

"
e

i=1,...,r the p.d.f. of first passage time from a to b is

Al3yseendps@) = 9y (t1dg) * gy(tld,) *.o% g (t]5,) (8)

where the convolution includes only those gi‘s for which ji >0 and 9=1t¢.

Aggregation Across Replications
Although (4) proves useful for computation of Rk’ an alternative

representation considerably simplifies the derivation of results. Let

_ ok r () .
Cippeeendy ™ [p=1 Tee8NS™ - 5Q) (9)
where -
§(x) =1 ifx=0
=0 otherwise,
so that one can write (4) as
1 cw
R, =17 7V. : K. . J1seeasd s .
k k zJ],-..,Jr=0 Jyseeesdy A(Jl Jp g)
Note that
m

AK
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is the number of replications that enter b on step m. More importantly, note

that Kj j /k is an unbiased estimator of p(s;a,b) in (1) with
1277y

frequency vector s = (jl""’jr) in the case in which there are r = (n + 1)2
distinct types of transitions. Although we hereafter discuss the properties
of Rk it should be recognized that a reward function
. . . *
Aldyseeendpig) =Ta, 635 - §))

*

specializes the analysis to the estimation of p(s;a,b) where s = (j;,...,jr) .

Serial Simulation

Presumably, the objective of simulation is to perform k replications
sufficient to achieve an acceptable accuracy for Rk as an estimate of ERk.
In the case of k independent replications in series, with a#b, one can ensure
that each replication begins with an exit from a and ends with a first entry
into b by replacing {pbj; j=0,1,...,n} by pba=1, and pbs=0 for ¥V s#a.
For the case a=b there is no need to modify the probabilities. In the

independent case one has var Rk=0(1/k) and computation time complexity 0(k).

Parallel Stmulation

To speed up the convergence rate of var Rk we turn to parallel
simulation using rotation sampling. Hereafter, a prime superscript denotes
parallel rotation sampling. Consider k replications each beginning with an
exit from state a and set pbb=1 and pbs=0 for ¥ s#b. If a=b this modification
of {pbs} should be performed after the first transition. This modification
makes the chain absorbing with transient states jeSL, where Sb = S-b,
and absorbing state b. Let Tm denote the set of transient states with at
least one resident replication at the end of step m and let ij denote the
number of such replications in state jeTm. Let {Ujm; jeTm} denote a sequence

of i.1.d. random variables uniformly distributed on [0,1) and define for
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i=1,.. ,ij
vijm = Ujm + (i-l)/ij if Ujmd-(i-])/Kjm
(10)
- :_ ' - .
= Ujm + (§ 1)/I(J.m 1 otherwise.
Also define
= 7S S
9s = Leso Py >
and (1)
qj"]=0.

Then at step m+1 replication i in state j goes‘to state s if
qj,s-1 S_Vijm < qjs‘ Since an=1, a destination is guaranteed.
Note that although Vljm""’vK'mjm are each uniformly distributed on

{0,1), they are not independent. Therefore, the sample path of each replication
from a to b has the correct probability law, but the k paths are not independent.
The assignment in (10) is ca11ed_rotation sampling énd produces a clear benefit
in simulation. For a reward function as in (5), the use of (4) leads to

var R < 0((1n k/k)?)  new
and (12)

var Ry < 0((In K)/K%)  nww
which improve on 0(1/k) for independent replications. Moreover,
for (5) one can show that the computation time complexity is O(In k) for n < »
and 0({(In k)z) for n » o, This last result follows from a more compact

sampling scheme, than that in (10), that can be used when there is no need

to keep track of the distinct sample paths on each replication. See

.Fishman (1981a, 1981b, 1982a). For the more general reward function (4),

keeping sample path data to compute {Nj(z);'jel} for £=1,...,k is necessary and
therefore the computatfon time complexity is O(k) .
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- ' One additional result is of importance. Let K%jm denote the number of

replications that move from i to j on step m. Then it is shown in Fishman (1981a)
that as k + =

var K.. =0(1) i,jeS m=1,2, ... . (13)

ijm
We use this result next when bounding var RL for the general reward function (4).
f; Observe that by analogy with (9)

ak =7 o K T. o K
bm J.-lan--s.)ro J-ls---er 'IESb ibm

Jete..tj =m
g! 1 r
-

(14)

so that for given m and k + «

m m
! . . . K: . K: .
L]”'U1FO %]“."JFO “W(1r.“,%’ h’”'dﬂ

LPRSPRL A N B PR SRS AL

“Lijes, <©Kibms Kipn) (15)

= 0(1)

Then it can be shown that as k + o -
cov (K; ., K! L) =
VK Ky ) T 0 (16)

so that our estimate K5 K} /k of p(s;a,b) with s = (j1,...,jr) has
]’ouo’ r ~

variance O(I/kz) . Proof of (16) follows from Proposition 1.

Proposition 1. Let X],...,xt denote random variables with

var X; = of(z) ,

cov (Xi’ Xj) = oij(z) i3 1,j=1,...,t
and define

R |
Y= Lok

...........




with
var Y, = w3(z)  §ela..t.
J J
If
' .2 _ .
Tim y, (2) =C <= Vi,
290 J
then
Tim a?(z) < constant vi. (17)
o
Proof. Observe that
o2z) = ullz) - 4 (2) - 2, (2)
where
Ct(z) = cov (xt, Yt-l) t>1 .
Since
ICe(2)] 2 0,(2) w,_,y(2)s
one has
2 2 2 _
ot(z) -2 ot(z) wt_.l(z) *wg g (z) - wt(k) =
'E:: [Ut(z) = wt_'l(z) = mt(z)] [ot(Z) - wt'](z)+ wt(z)] < 0
fé. so that
S wt_](z) - wt(z) < ot(z) < mt_.l(z) + wt(z) (18)
= Taking the limit as z+ = gives (17). The result in (16) follows directly.
g; We now derive var R& for the important case
:T’ 23]’.“,3"‘=0 A(jp“-sjr; 2) < constant (19a)
3N

and

(19b)

A(j],...,jr;g) >0 Vijseonndy
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fi(t) = 1 t (!i Z. ], A’i > O, (24)
T (ai) O<tcem
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denoted by G(ai’ Ai). Let us also assume that all transition pairs (i,j)

with the same p.d.f. are regarded as one type in I and that A< eee <A

5T

For an arbitrary replication with Ni transitions of type i, the corresponding

total holding time has the Gamma distribution G(“i Ni’ Ai) with p.d.f.

[
b,
b
i~

! @i N T e |
g.(tiN.)= .9 N; > 1, 2. >0,

Then the estimated first passage time p.d.f. is

' ] oo ' .
R (t) = ) . . .
k( ) E-EJ],...,JF=0 KJ],...,Jr g(tljl""’Jr) (26a)
where

gt dyseenad,) = 0y (E]3)) *oo% g (t]5)) (26b)

and the convolution is taken only over those types i for which ji >0 .

| SRR

In practice, it is more convenient to compute Ri(t) from
= 1k 2
| Re(t) = 1 I8, a(elm, (), n (8 (27)
5 | | |
- which is algebraically equivalent to (26a). Note that the sample frequencies (9)

for the parallel simulation, need not be computed when (27) is used. However,
(2

the computation of g(tiN](z),...,Nr")) remains a difficult one when

Al,...,Ar are unequal. By using the Taylor series expansion of e® » one

can write (27) equivalently as
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Proposition 2. Let the reward function A satisfy (19a) and (19b). Then

var R& 5,0(1/k2). (20)
Proof. Let B=sup var K3 , i Since these variances are
— ] ¢-.,r

j],.".jr

bounded, clearly

. o . . 112 2
var Rk < [zj],...,erO A(J]:---’Jr)] B/k
(21)
< 0(1/%%).

We now show that the result (20) applies for the case of the first

passage time p.d.f. in (8). Observe that one can write

zj]""’jr:O A(j]"",Jr; t) =

* %* * (22)
h.l(t) hz(t) hr(t)
where hi is the renewal density function
hi(t) = I3 9,-(;[3’) O<tcw (23)

and
g, (£[0)= 0 =1,
Since each of the renewal densities can be bounded from above, it is clear
that for te [0,») (22) is also bounded, thus establishing (20).
2. Gamma Distributed Holding Times

Although our estimator of p(s;a,b) based on rotation sampling has
a clear advantage over an estimator based on independent replications,
computational problems remain in using either estimator to estimate the
first passage time p.d.f. in (1). In this section we describe and illustrate

how these problems can be overcome for the common case of Gamma holding times.
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g(th]s N =
Lij=0° z"s-f(’[ pilislty ) gglting + 1. ) (28)
where
s = max (i: Ni > 0),
I0 =0
and for j =1,...,S
=1. ., +1i.,
Ij IJ_] i
Hy = Bt o
= i if N.=0
IIJ ]) G(Ij) | 1 j
M.+ 1. .
=_r(_J___J)___ Mot L 1ee )i iF NSO
e a0 ) ]
IR A M B
and
As
w, = —— 2 =min(i: i > j, N, > 0).
J AZ i

More concisely, (28) is equivalent to

g(tIN]9°°-:Nr) = z;s_]=o Q.1 (Ir_]) gs(tIMs + Is_]) (29)

where

a;(1;) = py(4,]0) (30)

g

qj(lj) = ZIJ ] 0 pJ( J J ]II ])q ](I ]) J 2 ].

Finally (28) has the equivalent form
P ) et 95 (H 0t
g seens = * :
‘ r t r(M,) %1000 * Ly M (M + £-1) Y
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Expression (31) is exact and can be used in (27) with Ni(z) replacing Ni
i=1,...,r to compute an estimate of the p.d.f. Note that the term in
brackets in (31) is eventually a decreasing function of j for given t .
This fact enables one to truncate the summation on j at a point where the

remainder is relatively incidental.

3. Examples

Consider an M/M/1 queueing model with arrival rate A and service rate w.
Suppose one wants to estimate the p.d.f. of the busy period. Cox and

Smith (1961, p. 148) give this p.d.f. as

-(at+w)t
gh)=§;52— 1, (2t VAw) D<tcw (32)

where I] denotes the Bessel function of imaginary argument and first order.
In this example, a=b=0, n== and r=1, since all holding time distributions
from states i>0 are exponential with identical rate A+w. If N is the total
number of transitions on an arbitrarily selected replication, excluding

the initial transition from state 0, then

_ L}+N)N tN'] e-(A+w)t

A(N,t) = g(t|N) = (33)
r(N)
and the sample mean based on parallel simulation is
N(Z) N(t)_] '(A+ )t
R'(t) = l{k (A+w) t e w
k kie=1 rv(ehy
157 Gg)dpd-lem(ult
= o)., K (34)
k9=1 31 r(J)
where
Kl = zk 6(N(£) J)
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\ ‘ Experimental Design

ii . We distinguish between microreplications and macroneplications. -

E%E In particular, each of L independent macroreplications of the simulation

Eii contains k parallel microreplications that use (10). The L independent data

blocks enable us to estimate var Ri(t) for each value of k considered. The
global factor levels are 1=0.9, w=1 and t=0.5j; j=1,...,10. For these, L=100
macroreplications were run for six experiments with kj=27+j microreplications
on experiments j=1,...,6 . The macroreplications were used to estimate

var RL(t) for each t and k considered. Also, for these A,w and t's,
L=1000 macroreplications were run each for k=1 microreplication to get a
baseline estimate of var R{(t) » the variance without rotation samnling.

Table 1 shows g(t) from (32) and RéSG(t) for comparative purposes.

Insert Table 1 about here.

To measure variance reduction we use the ratio

var R{(t)
vkz___—-—-—
k var Ré(t)

Our earlier results indicate that this quantity is linear in k as ke .
Now when assessing variance reduction for the estimation of a function, it
should be noted that the variance reductions for all 10 values of t in
Table 1 need not be identical for each k . Therefore for each k we
plotted the minimal and maximal Vk‘s in Fig. 1, noting that all remaining
variance reductions 1ie between them. In general, the graphs agree with

theory. Moreover, we observed that for fixed k the Vk's decreased with

Insert Figure 1 about here.

-------------
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decreasing coefficients of variations computed for the estimates derived in
the baseline case of independent replications. This result is reassuring
for it indicates that the benefits of rotation sampling are most apparent
precisely where needed, namely where the larger coefficients of variation
arise.

Our second example illustrates the estimation technique based on (31).
It uses the same Markov chain as in example 1 but now with 2=0.5, w=1
and holding time distributions G(l,xm) m=1,...,4 . Table 2 lists the

transition types. The objective was to estimate the first passage time

Insert Table 2 about here.

for a=b=0 at times t=0.1j j=1,...,40 . For these parameters, L=100
macroreplications were run for nine experiments with kj=2]+j microreplications
on experiment j=1,...,9 . Also, L=1000 macroreplications were run each with
k=1 micrereplication to get a baseline estimate of var R{(t) . Figure 2
shows the graphs of minimal and maximal variance reduction Vk versus k on
logarithmic scales. Again the graphs essentially agree with theory. For each k
the same relationship between variance reduction and coefficients of variation
were observed as in example 1.
4. Conclusions

This paper demonstrates how one can estimate by a superefficient
method the probability of observing S-Sy transitions of types 1,...,r
during a first passage from state a to state b 1in a positive recurrent

aperiodic Markov chain with state space § = (0,1,...,n) . It then shows how

these results can be used to estimate a class of mean reward functions of which

A ¥ om

e, e e e T e e e A et e s CR.] b B B
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first passage time p.d.fs. are a special case. Section 2 specializes the
analysis to the case of Gamma holding times, showing how one derives expression
(31) which is convenient for numerical calculation. Section 3 demonstrates
the technique by two examples.

In order to implement the proposals of this paper, one needs a package
that generates the transition frequencies {Nij(l) s 1,J € S} £=1,...,k
for k parallel replications based on rotation sampling. The MCHAIN FORTRAN

program in Fishman (1982b) will generate these data.
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ﬂ Table 1
Results for Example 1

2=.9 , w=1 , n== , and L=100

t | 5 1.0 1.5 2.0 2.5 3.0 35 40 4.5 5
g(t) L4319 .2276 .1399 .0955 .0701 ,0542 .0434 .0358 .0302 .0258
Rygg(t) .4320 .2278 .1399 .0956 .0702 .0543 .0435 .0359 .0302 .0258

Table 2
Transition Types for Example 2

type

m transition pairs An
1 (0,1) 0.5
2 (1,0), (1,2), (2,1) 1.5
3 (2,3), (3,2), (3,4), (4,3) 2.0 ’
4 (i,§) J=i-1, i+1; i=5,6,... 3.0
ﬁ!
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